Co-implanting orthotopic tissue creates stroma microenvironment enhancing growth and angiogenesis of multiple tumors

نویسندگان

  • Per Borgstrom
  • Phil Oh
  • Malgorzata Czarny
  • Brian Racine
  • Jan E Schnitzer
  • Erik Sahai
  • Danielle Park
  • Phil Oh
  • Hong Zhao
  • Zhen Zhao
چکیده

Tumor models are needed to study cancer. Noninvasive imaging of tumors under native conditions in vivo is critical but challenging. Intravital microscopy (IVM) of subcutaneous tumors provides dynamic, continuous, long-term imaging at high resolution. Although popular, subcutaneous tumor models are often criticized for being ectopic and lacking orthotopic tissue microenvironments critical for proper development. Similar IVM of orthotopic and especially spontaneous tumors is seldom possible. Here, we generate and characterize tumor models in mice for breast, lung, prostate and ovarian cancer by co-engrafting tumor spheroids with orthotopic tissue in dorsal skin window chambers for IVM. We use tumor cells and tissue, both genetically engineered to express distinct fluorescent proteins, in order to distinguish neoplastic cells from engrafted tissue. IVM of this new, two-colored model reveals classic tumor morphology with red tumor cell nests surrounded by green stromal elements. The co-implanted tissue forms the supportive stroma and vasculature of these tumors. Tumor growth and angiogenesis are more robust when tumor cells are co-implanted with orthotopic tissue versus other tissues, or in the skin alone. The orthotopic tissue promotes tumor cell mitosis over apoptosis. With time, tumor cells can adapt to new environments and ultimately even grow better in the non-orthotopic tissue over the original orthotopic tissue. These models offer a significant advance by recreating an orthotopic microenvironment in an ectopic location that is still easy to image by IVM. These "ectopic-orthotopic" models provide an exceptional way to study tumor and stroma cells in cancer, and directly show the critical importance of microenvironment in the development of multiple tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleukin-4 Expressed By Neoplastic Cells Provokes an Anti-Metastatic Myeloid Immune Response

OBJECTIVE Interleukin-4 (IL-4) can induce macrophages to undergo alternative activation and polarize toward an M2-like or wound healing phenotype. Tumor associated macrophages (TAMs) are thought to assume M2-like properties, and it has been suggested they promote tumor growth and metastasis through effects on the tumor stroma, including extracelluar matrix remodeling and angiogenesis. IL-4 also...

متن کامل

Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against c-MET and VEGFR2

Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and...

متن کامل

Multikinase inhibitor regorafenib inhibits the growth and metastasis of colon cancer with abundant stroma

Interaction between tumor cells and stromal cells plays an important role in the growth and metastasis of colon cancer. We previously found that carcinoma-associated fibroblasts (CAFs) expressed platelet-derived growth factor receptor-β (PDGFR-β) and that PDGFR targeted therapy using imatinib or nilotinib inhibited stromal reaction. Bone marrow-derived mesenchymal stem cells (MSCs) migrate to t...

متن کامل

Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment

BACKGROUND The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from...

متن کامل

Pigment epithelium-derived factor stimulates tumor macrophage recruitment and is downregulated by the prostate tumor microenvironment.

Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis but whether it has additional effects on the tumor microenvironment is largely unexplored. We show that overexpression of PEDF in orthotopic MatLyLu rat prostate tumors increased tumor macrophage recruitment. The fraction of macrophages expressing inducible nitric oxide synthase, a marker of cytotoxic M1 macrophages,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013